Monte Carlo Tree Search in Chinese Dark Chess

Shi-Jim Yen'!, Cheng-Wei Chou?, Tsan-Cheng Su’,
Shun-Chin Hsu*, Hsin-Hung Chou?® and Jr-Chang Chen®

1:2.3 Dept. Of Computer Science and Information Engineering, National Dong Hwa University, Taiwan
> Dept. of Information Management, Chang Jung Christian University, Tainan, Taiwan
Dept. of AM, Chung Yuan Christian University, Taiwan
!sjyen@mail.ndhu.edu.tw, 2d9721002 @ems.ndhu.edu.tw, *d9821009@ems.ndhu.edu.tw,
“schsu@mail.cjcu.edu.tw, *chouhh@mail.cjcu.edu.tw, Sjcchen@cycu.edu.tw

Abstract—In this paper we propose an efficient
method to apply Monte Carlo Tree Search (MCTS)
to Chinese dark chess (CDC) and get very well
experimental results. CDC is an imperfect
information variety of Chinese chess. This game is
very popular in Chinese culture sphere. The key
point of solving this game is how to handle the
imperfect information part very well. Unfortunately,
most of state-of-the-art CDC programs cannot do it.
MCTS is a famous best-first search algorithm, which
is suitable to make decisions in uncertain
environments. We try to change the tree structure
of MCTS to handle the imperfect information part
of CDC, and obtain great improvement on CDC.
Moreover, our program won every game in
computer CDC tournament in TCGA 2011
computer game tournament.

Keywords- Chinese Dark Chess, Computer Game,
MCTS, Imperfect Information Game

I. INTRODUCTION

Chinese dark chess (CDC) is a very popular
two-players board game in Chinese culture

sphere. This game is a variety of Chinese chess.

Although they use the same pieces and similar
board (CDC only uses half of board of Chinese
Chess), however, in the beginning of CDC, all
pieces are placed conversely, so types of pieces
are unknown. Therefore, CDC is an imperfect
information game. The type of pieces can be
known by flipping it and spending one round.
If type of piece is known, piece can be moved
as way of chess-like. Because it takes one
round to switch the state of a piece from
unknown to known, therefore deciding which
piece and when to make unknown into known

is a difficult problem of this game. Section II
will show more details.

Until now, state-of-the-art program of CDC
still uses min-max tree and alpha-beta
pruning[1]. Because CDC is an incomplete
information game, alpha-beta method cannot
handle the flipping action satisfactorily. Monte
Carlo Tree Search (MCTS) is an efficient
algorithm for applying it to not only the game
of Go [2], but also Amazons [3], even as some
incomplete information games as Poker [4],
Kriegspiel [5], Backgammon [6], and Phantom
Go [7]. In This paper, we try to apply MCTS to
CDC, change tree structure of flipping action,
and make the flipping action and the moving
action can be measured in the same way.

(a) (b)

Fig. 1. (a) The board of CDC, (b) The initial state of
CDC.

II. CHINESE DARK CHESS

Chinese dark chess (CDC) uses the same
pieces with Chinese chess, but half of the
board of Chinese chess. 4x8 squares are used
as the board of CDC. Figure 1 shows the board.
In the beginning of a game, all the thirty-two
pieces are placed conversely, so types of pieces
are unknown, as Fig.1(b).

TABLEL THE PIECE TYPES OF CDC
King I(Highest) | 1
curd | @) | @ 2 2
Minister 3 2
Rook 4 2
Knight 5 2
Camnon | (&) 6 2
Pawn TLowest) | 5

The pieces of CDC have two kinds of colors,
black and red. There are seven types of pieces
in this game, as Table I. The rank row shows
the rank of every type of pieces. In general, a
piece can capture the pieces with equal or
lower ranks, but Pawn, the piece with lowest
rank, can capture King, the piece with highest
rank. It makes a cycle. All types of pieces
except Cannon can only move or capture a
piece one square up, down, left and right
within the 4x8 grid area.

(0]
BIRIEC)E

58

a b d

Fig. 2. An example of Cannon. Now turn is black. The
black Cannon can moves to up or right square.
However, it cannot capture the red Pawn. In contrast,
the black Cannon can eat the red King, the red Guard
and the red Cannon.

Cannon is a special piece. Although it
moves as the same way of other pieces, but it
cannot capture around pieces. If it wants to
capture, it needs one piece, which can be any
type, as a carriage to capture any opponent’s
pieces of any distance in the same row or
column. Figure 2 shows the ability of this
special piece.

III. RELATED WORK

CDC can be seen as a chess-like game,
therefore most of the programs in past
tournaments [10] [11] use min-max algorithm,
alpha-pruning, and some additional flipping
heuristic. One of the best program is Flipper,
which is developed by Bo-Nian Chen and
Tsan-sheng Hsu [1]. Flipper combines the
flipping move to the search tree. However, this
method will cause very high branching factor.
They use some methods to reduce the
branching factor. The most efficient method is
initial-depth flipping, which means only
consider the flipping moves in the first level of
search tree, as Fig. 3.

Moving
IAtion Initial Depth
Flipping Actions
Only Considers Moving Actions Tniizl Depth - 1

o0 o

Fig. 3. An example of initial-depth flipping. [

Monte Carlo Tree Search (MCTS) is a best-
first search. This search method builds an
Asymmetric tree in memory incrementally. In
general, MCTS have four stages as Fig.4.
Those stages will be described below:

Selection : Every time, MCTS starts from
the root, selects the best child in every level
until reaches the leaf node of current tree. The
strategy UCT [8], as formula 1, is the famous
method to decide which child is the best. In
formula 1, v; means past rewards of node i, T;
means the visit counts of parent of node i, N
means the visit counts of node i. Bias is a
parameter to balance exploitation and
exploration.

InN
_ 1
T (1

i

v; + bias X

Expansion : One (or more) new node(s)
will be add the current tree. These nodes
usually mean new boards by playing legal
moves.

Simulation : This stage will play the game
to end from the position of leaf node, and
obtain result of the game.

Backpropagation : The result of simulation
will update all nodes of the best sequence
which are selected in Selection stage.

IV. OUR METHOD

Our method is to apply MCTS to Chinese
dark chess by changing tree structure of
flipping actions. The four stages of MCTS
applied to CDC will be described below:

Selection : In this stage, we use the famous
strategy UCT [8] as formula 1. The goal of
selection is to find a child which maximize
formula 1 in every level of the game tree, and
obtain a best sequence from root to leaf.

Expansion : In this stage, we divide nodes
to two kinds. One is the moving actions,
another is the flipping actions. If the action of
the selected leaf node is moving action, then
we expansion it by normal way. If the action of
the selected leaf node is flipping action, we
will create an inner node as the root of sub tree
which flip some specific piece. For example,

Repeated X times

Selectlon [Expansion ———{ Simulation || Backpropagatlon

50

The selection function is
applied recursively until
a leaf node is reached

One or more nodes
might be created

¥

The result of this game is
backpropagated in the tree

One simulated
game is played

Fig. 4. Scheme of a Monte-Carlo Tree Search. [13]

there are two kinds of three pieces, one king
and two cannon, are not revealed. If now we
select a leaf node which action is flipping, and
there is not any inner node in this node. We
will create an inner node, and the real revealed

piece will be chosen by probability distribution.

In this example, there is one-third chance of
choosing king, and two-thirds chance of
choosing cannon. If next time the leaf node is
chosen, and king is chosen again, then we will
expansion the inner node and create its
children. Figure 5 shows the process of our
expansion stage.

select

select

moving flipping moving flipping

moving flipping

Fig. 5. The process of our expansion stage.

Simulation : In the simulation game, we
only use one rule in simulation : if there are
moves that can eat opponent's piece, then these
moves will own the highest priority of choice.
Otherwise, we randomly select a legal action.

Backpropagation : If the result is not draw,
then the number of wins of winning nodes in
the best sequence will be added 1. If the result
is draw, then the number of wins of all nodes
in the best sequence will be added 0.5.

V. EXPERIMENT RESULTS

We will measure our result by battling with
another CDC program, BASIC, which uses
nega-max algorithm and some simple flipping
process as explained in [1]. Our experimental
environment is formed by using Intel Core 2
Quad Q9450 CPU, 8G RAM, and the
operation system is Windows 7. All of our
experiment only used one core. Table II shows
the scalability of our program. As general
MCTS programs, winning rate of our program
grows fast in less simulations, and meets
plateau time after simulating fifty thousand
times.

TABLE II. SCALABILITY OF OUR PROGRAM
Sims Sec. of the Win Draw Lose
first move
2000 <1 24.25% 51.75% 24%
(+2.1) (£2.5) (+2.1)
10000 1 55.5% 40% 4.5%
(+2.5) (£2.5) (*1)
20000 2 62% 34.5% 3.5%
(*2.4) (£2.4) (£0.9)
50000 6 72.75% 24% 3.25%
(£2.2) (£2.1) (£0.9)
100000 12 72% 24.25% 3.75%
(+2.2) (+2.1) (+0.9)

TABLEIIL. ~ COMPARISON OF OUR PROGRAM AND
STATE-OF-THE-ART PROGRAM[1]

Al Sec.
of the
first

Games | Win Draw Lose

move
MCTS_10k 1 400

55.5% 40% 4.5%

(£2.5) 2.5 | (1)
MCTS_50k 6 400 72.75% | 24% 3.25%

(#2.2) | #2.1) | (0.9)
VAR1 30 200 59.5% 39.5% | 1%
VAR2 30 200 50% 49.5% | 0.5%
VAR3 30 200 44.5% 55% 0.5%

Table 2 shows that our program perform
state-of-the-art program of Chinese Dark chess
[1] in both winning rate and spending time.
MCTS 10k and MCTS_ 50k means simulating

ten thousand times and fifty thousand times,
respectively. VAR1~3 are three versions of
state-of-the-art program [1].

V1. CONCLUSION

In this paper, we try to apply MCTS to the
game of Chinese dark chess by changing tree
structure of flipping actions. This method
makes the flipping actions and the moving
actions can be measured by the same way. The
experiment results demonstrate that our
method is efficiency. In addition, we only use
one domain knowledge in simulation stage,
and also obtain good result. Moreover, our
program, Diablo, won the gold medal in
Chinese dark chess at the TCGA computer
game tournament which took place from June
25th to 26th 2011 at Tainan, Taiwan [9].

In the future, we will try to use RAVE [10],
and add more domain knowledge to our
program. We believe those techniques can
improve the strength of our program greatly.

References

[1] Chen, B. N,, Shen, B. J. and Hsu T. S. (2010)
Chinese Dark Chess. ICGA Journal. Vol. 33, No.2,
pp-93-106.

[2] Gelly, S., Wang, Y., Munos, R., & Teytaud, O.
(2006). Modification of UCT with patterns in
Monte-Carlo Go (Technical Report 6062). INRIA.

[3] Kloetzer, J., Iida, H., Bouzy, B. (2007) The
Monte-Carlo Approach in Amazons. Proceedings
of the Computer Games Workshop 2007 (CGW
2007), pp. 185-192. Universiteit Maastricht,
Maastricht.

[4] Guy, V. B, Kurt, D, and Jan R. (2009) Monte-
Carlo tree search in poker using expected reward
distributions. Advances in Machine Learning, First
Asian Conference on Machine Learning, ACML
2009, pp. 367-381.

[5] Ciancarini, P. and Favini, G.P. (2010) Monte
Carlo tree search in Kriegspiel. Artificial
Intelligence. Vol. 174, Jul. 2010, pp. 670-684.

[6] Van Lishout, F., Chaslot, G., Uiterwijk, J. (2007)
Monte-Carlo Tree Search in Backgammon.
Computer Games Workshop, pp. 175-184.

[7]

(8]

(]
[10]

[11]
[12]

[13]

Borsboom , J., Saito, J., Chaslot , G., and
Uiterwijk, J. (2007) A comparison of Monte-Carlo
methods for Phantom Go, Proc. 19th Belgian—
Dutch Conference on Artificial Intelligence —
BNAIC, Utrecht, The Netherlands.

Kocsis, L., and Szepesvari, C. (2006). Bandit
based Monte-Carlo planning. 15th European
Conference on Machine Learning, pp. 282-293.
TCGA tournament,
http://tcga.ndhu.edu.tw/tcga2011/eng/p_10.htm.
Gelly, S. and Silver, D. (2011) Monte-Carlo tree
search and rapid action value estimation in
computer Go. Artificial Intelligence. Vol. 175,
Issue 11, July 2011, Pages 1856-1875

TAAI tournament, http://taai2010.nctu.edu.tw/
ICGA tournament, http://www.grappa.univ-
lille3.fr/icga/

Chaslot, G.M.J.-B., Winands, M.H.M., Uiterwijk,
JWHM., van den Herik, H.J., Bouzy, B.:
Progressive strategies for Monte-Carlo Tree
Search. New Mathematics and Natural
Computation 4(3), 343-357 (2008)

